

WASPALOY

Key Features

Very high strength at elevated temperatures

Strength is generally comparable to that of Rene 41 and generally superior to Inconel 718

Age hardenable

^^High temperature dynamic applications

IMPORTANT

We will manufacture to your required mechanical properties.

key advantages to you, our customer

0.025mm to 21mm (.001" to .827")

Order 3m to 3t (10 ft to 6000 Lbs)

Delivery: within 3 weeks

Wire to your spec

E.M.S available

Technical support

WASPALOY available in:-

- Round wire
- Bars or lengths
- Flat wire
- Shaped wire
- Rope/Strand

Packaging

- Coils
- Spools
- Bars or lengths

WASPALOY

Chemical Composition			Specifications	Key Features	Typical Applications
Element	Min %	Max %	AMS 5544	Very high strength at elevated temperatures	Gas turbine engine parts
С	0.02	0.10	AMS 5706 AMS 5708	Strength is generally comparable to that of	Aerospace components
Mn	-	0.10	AMS 5828 ASTM B637	Rene 41 and generally superior to Inconel 718 Age hardenable ^^High temperature dynamic applications	Springs and fasteners
Si	-	0.10			
Р	-	0.010			
S	-	0.010	W.Nr. 2.4654		
Cr	18.00	21.00	UNS N07001 AWS 170		
Со	12.00	15.00	7005 170		
Мо	3.50	5.00			
Ti	2.75	3.50			
Al	1.20	1.60			
В	0.003	0.010			
Zr	-	0.04			
Fe	-	2.00			
Cu	-	0.10			
Ni BAL					

Density	8.16 g/cm ³	0.295 lb/in ³	
Melting Point	1330 °C 2425 °F		
Coefficient of Expansion	12.2 μm/m °C (20 – 100 °C)	6.8 x 10 ⁻⁶ in/in °F (70 – 212 °F)	
Modulus of Rigidity	81 kN/mm²	11750 ksi	
Modulus of Elasticity	211.0 kN/mm²	30600 ksi	

Heat Treatment of Finished Parts							
Candition as summitted by Alley Wive	Туре	Temperature		Time o (Ulu)	Casling		
Condition as supplied by Alloy Wire		°C	°F	Time (Hr)	Cooling		
Annealed	Stabilize Age Harden	843 760	1550 1400	4 16	Air Air		
Spring Temper	Anneal Stabilize Age Harden	1050 843 760	1920 1550 1400	4 4 16	Air Air Air		

Properties							
Condition	Approx. tensile strength		Approx. operating temperature depending on load^^ and environment				
	N/mm²	ksi	°C	°F			
Solution Annealed	<1100	<159	-	-			
Solution Annealed + Aged	1300 – 1500	189 – 218	up to +550	up to +1020			
Spring Temper	1300 – 1600	189 – 232	-	-			
Spring Temper + Annealed + Aged	1300 – 1500	189 – 218	up to +550	up to +1020			

 $\label{thm:continuous} The above tensile strength \ ranges \ are \ typical. \ If you \ require \ different \ please \ ask.$

 $[\]verb| ^{\text{$\wedge$}} \textbf{Dynamic applications} = \textit{active/lively/changing} \\$